
J. Vis. Commun. Image R. 38 (2016) 824–837
Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i
Machine learning based fast H.264/AVC to HEVC transcoding exploiting
block partition similarityq
http://dx.doi.org/10.1016/j.jvcir.2016.04.020
1047-3203/� 2016 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by M.T. Sun.
⇑ Corresponding author.

E-mail addresses: lwzhu2-c@my.cityu.edu.hk (L. Zhu), yun.zhang@siat.ac.cn
(Y. Zhang), na.li1@siat.ac.cn (N. Li), jianggangyi@nbu.edu.cn (G. Jiang), cssamk@
cityu.edu.hk (S. Kwong).
Linwei Zhu a,b, Yun Zhang a,⇑, Na Li a, Gangyi Jiang c, Sam Kwong b,d

a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
bDepartment of Computer Science, City University of Hong Kong, Hong Kong, China
c Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
d Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 September 2015
Revised 9 March 2016
Accepted 24 April 2016
Available online 25 April 2016
Video transcoding is to convert one compressed video stream to another. In this paper, a fast H.264/AVC
to High Efficiency Video Coding (HEVC) transcoding method based on machine learning is proposed by
considering the similarity between compressed streams, especially the block partition correlations, to
reduce the computational complexity. This becomes possible by constructing three-level binary classi-
fiers to predict quad-tree Coding Unit (CU) partition in HEVC. Then, we propose a feature selection algo-
rithm to get representative features to improve predication accuracy of the classification. In addition, we
propose an adaptive probability threshold determination scheme to achieve a good trade-off between
low coding complexity and high compression efficiency during the CU depth prediction in HEVC.
Extensive experimental results demonstrate the proposed transcoder achieves complexity reduction of
50.2% and 49.2% on average under lowdelay P main and random access configurations while the rate-
distortion degradation is negligible. The proposed scheme is proved more effective as comparing with
the state-of-the-art benchmarks.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

With the development of computing and multimedia technolo-
gies, various types of multimedia devices become available, includ-
ing computers, laptop, smart phones, television, pad, set-top box,
even the wearable devices, like glasses and watch. The diversities
of capabilities of these multimedia devices, conditions of their
accessed networks, multimedia data syntax/formats and user
requirements unfortunately create a gap in end-to-end communi-
cation and sharing the multimedia contents among different termi-
nals. Video transcoding is one of the proper solutions to bridge the
gap for video communication among different applications and
systems [1]. It is a process of converting one compressed stream
to another required stream, in which properties of the bit stream
may be changed, including coding syntax, bit rate, resolution,
frame rate, coding structure and quality [2].
Coding technologies and standards are necessary to transcode
one bit stream to another. With the advance of the video coding
standards, the compression efficiency is significantly improved as
adopting many novel and advanced coding tools and technologies.
For example, the compression efficiency is doubled from MPEG-2
to H.264/Advanced Video Coding (AVC) [3] and H.264/AVC to High
Efficiency Video Coding (HEVC) [4]. These video compression stan-
dards actually co-exist in a certain range of applications, which
makes transcoding desirable. Meanwhile, the syntax and coding
technologies vary significantly from standard to standard, which
makes it challenging to transcode a bit stream of previous standard
to that of the latest, e.g. HEVC.

Over the last few decades, many researches have been develop-
ing video transcoding algorithms for different system require-
ments and applications. Cock et al. [2] used motion refined
rewriting of single-layer H.264/AVC streams to multiple quality
layers for Scalable Video Coding (SVC) streams. Zhang et al. [5] pro-
posed a novel multidimensional no-reference video quality metric
for video transcoding, where frame rate and frame size are taken
into account simultaneously. Liu et al. [6] proposed a Quality of
Experience (QoE) oriented transcoding approach to enhance the
quality of mobile 3D video service, where transcoding parameters
are configured according to the feedbacks of both the network and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2016.04.020&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2016.04.020
mailto:lwzhu2-c@my.cityu.edu.hk
mailto:yun.zhang@siat.ac.cn
mailto:na.li1@siat.ac.cn
mailto:jianggangyi@nbu.edu.cn
mailto:cssamk@cityu.edu.hk
mailto:cssamk@cityu.edu.hk
http://dx.doi.org/10.1016/j.jvcir.2016.04.020
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 825
the user-end device information. A straightforward video transco-
der is designed merely to cascade the decoder and encoder, noted
as cascaded transcoder [1]. The incoming video stream is fully
decoded, and then the target video bit-stream is generated with
a new encoder by re-coding the former reconstructed video. In this
transcoder, the bit rate, syntax and format can be fully changed.
However, the information of the source compressed stream that
has not been fully and effectively explored to facilitate thereafter
encoding process, such as Motion Vector (MV) and block partition
type. Though video coding technical details vary from standard to
standard, there is still high correlation between the encoding out-
puts of two standards, e.g. block partition, reference frame indices,
since they basically follow the same framework, block based
hybrid structure.

To lower the coding complexity of the transcoder, Liu et al. [7]
proposed a fast MPEG-2 to H.264/AVC transcoding method based
on mode mapping and macroblock (MB) activity, in which skip
and intra modes are directly mapped from MPEG-2 to H.264/
AVC, and the MB mode of H.264/AVC is estimated according to
the residual Discrete Cosine Transform (DCT) energy from MPEG-
2 stream. Shu et al. [8] proposed a mode decision method by taking
into account the error propagation to the following frame. It
enhanced the overall robustness of the transcoded bit stream
against the packet loss. Moreover, a fast Motion Estimation (ME)
algorithm for MPEG-2 to H.264/AVC transcoding was proposed in
[9], where MVs as well as MB mode information extracted from
MPEG-2 bit-stream were utilized to speed up the ME of H.264/
AVC encoder. An MV decomposition algorithm for H.263 to
H.264/AVC transcoding was presented in [10]. Petljanski et al.
[11] presented a MB mode estimation technique for MPEG-2 to
H.264/AVC intra transcoding, in which the DCT coefficients of
MPEG-2 stream were exploited to represent the video texture
and predict intra MB mode of H.264/AVC. In summary, the above
methods mainly focus on the transcoding among MPEG-2, H.263
and H.264/AVC.

In HEVC, quad-tree block partition is adopted and the Coding
Unit (CU) size is from 8 � 8 to 64 � 64. In addition, more advanced
and refined coding tools, such as flexible Prediction Unit (PU) and
Transform Unit (TU) mode, are adopted to further reduce the pre-
diction residue [4]. These techniques improve the coding effi-
ciency, however, significantly increase the coding complexity.
Meanwhile, the hike of the number of mode candidates in HEVC
makes the optimization more challenging. Recent researches on
video transcoding from previous hybrid compression standards
to HEVC have also been reported. Peixoto et al. [12] proposed a fast
H.264/AVC to HEVC transcoder, where the MVs of H.264/AVC
stream were reused in HEVC coding process. In [13], power spec-
trum based Rate Distortion Optimization (RDO) model, input resi-
due, modes and MVs were used to estimate the best CU, PU modes
and their corresponding MVs. Shen et al. [14] proposed a paral-
lelization optimization method for fast H.264/AVC to HEVC trans-
coder, which implemented fast mode decision with wavefront
parallel processing and Single Instruction Multiple Data (SIMD)
acceleration. Jiang and Chen [15] proposed a MV clustering based
fast H.264/AVC to HEVC transcoding method. Chen et al. [16]
developed a H.264/AVC to HEVC transcoder based on distributed
multi-core processors, which claimed 720p@30fps real-time video
transcoding. Generally, these above mentioned schemes use the
information extracted from H.264/AVC bit-stream to form a mode
mapping between H.264/AVC and HEVC with hard thresholds and
categories, which will limit the transcoder’s performance and
adaptability. While, it jointly takes advantage of the current coding
information in HEVC and video content to improve the transcoding
performance.

To develop more advanced and reliable video coding or
transcoding algorithms, learning algorithms have been introduced
to solve the prediction or classification problems. Fernandez-
Escribano et al. [17] presented an efficient MPEG-2 to H.264/AVC
baseline profile transcoder, where machine learning tools were
used to exploit the correlation between the MB mode in H.264/
AVC and the distribution of motion compensation residue in
MPEG-2. Furthermore, a dynamic motion estimation technique
was proposed to further reduce the complexity of the decision pro-
cess. Chiang et al. [18] proposed a statistical learning based fast
coding algorithm for H.264/AVC, in which several representative
features in H.264/AVC were analyzed and a statistical learning
model was built. With the help of an off-line classification
approach from statistical learning, the complexity of motion esti-
mation and mode decision was significantly reduced. In [19], an
on-line machine learning based solution was introduced for
MPEG-2 to HEVC transcoding. After fully decoding and encoding
a few frames, this transcoder analyzed the relationship between
MPEG-2 stream information and CU depths in HEVC, so as to build
the learning model. Then, with this learning model, the HEVC’s CU
depth of the rest frames can be predicted by classifiers. In [20], sta-
tistical thresholds are integrated in the machine learning based
coding framework to help improve the accuracy. However, the fea-
tures adopted are empirically determined. Thus, it is difficult to
have a good trade-off between the complexity and RD performance
for different sequences. Additionally, in [21], CU partition in HEVC
was regarded as a binary classification problem solved by Support
Vector Machine (SVM). In the SVMmodel training, the RD degrada-
tion caused by misclassification was introduced as weights, which
reduced the number of misclassifications with higher negative
impacts. Xiong et al. [22] proposed a fast CU decision scheme based
on Markov Random Field (MRF) for fast HEVC inter coding, where
the variance of the absolute difference is adopted as the key fea-
ture. In [23], Zhang et al. proposed an early termination structure
and three-output joint classifier based on SVM, which can flexibly
adjust the CU depth prediction accuracy and complexity reduction
by changing the weighted factor in training. However, this model is
trained off-line and the feature selection still could be further
improved. Basically, machine learning based approaches are cap-
able of integrating multiple features and learning from video con-
tent or previous coded information to improve the transcoding
performance.

In this paper, a machine learning based fast H.264/AVC to HEVC
transcoding method is proposed, where a fast CU decision algo-
rithm is presented. Compared with our previous work in [23], this
paper will address the problem in fast H.264/AVC to HEVC
transcoding, and optimize the feature selection for the fast CU
decision. Meanwhile, we propose an on-line probability based
SVM method for CU depth prediction, in which an adaptive proba-
bility threshold decision algorithm is adopted to achieve a better
trade-off between low complexity and high compression effi-
ciency. The remainder of this paper is organized as follows: prob-
lems and motivations are presented in Section 2. Then,
complexity redundancies are analyzed in Section 3. Section 4
describes the proposed machine learning based fast transcoding
method. Experiments are implemented and the comparative
results are analyzed in Section 5. Finally, conclusions are drawn
in Section 6.
2. Problems and motivations

In conventional cascaded transcoder, the bit stream information
is not effectively utilized to facilitate the encoding process. To
tackle this problem and fully exploit the available information,
the bit stream is not necessary fully decoded and some of the bit
stream information can be shared to cascaded coding [17,19], such
as MVs, reference frames and block partitions. However, there are

Fig. 1. Block partitions in H.264/AVC and CTU splitting, quad-tree structure in HEVC.

(a) H.264/AVC MB partition (BasketballPass) (b) HEVC CU partition (BasketballPass)

Fig. 2. Example of block partition similarity between H.264/AVC and HEVC.

Fig. 3. Statistical block partition similarity between H.264/AVC and HEVC.

826 L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837
still several challenging issues in H.264/AVC to HEVC transcoding.
One of them is the HEVC adopts quad-tree structured partition and
the basic unit is up to 64 � 64, which is different from the
16 � 16 MB in H.264/AVC. The second is the HEVC has adopted
more advanced and refined coding techniques than H.264/AVC in
order to improve the coding efficiency, which also significantly
increases the computational complexity. So, it is challenging to
predict fine-grained coding parameters from coarse-grained cod-
ing parameters.

To analyze the block similarity between H.264/AVC and HEVC,
we firstly have a brief review on the block partitions in H.264/
AVC and HEVC. In H.264/AVC, a MB can be partitioned into one
16 � 16, two 16 � 8, two 8 � 16, or four 8 � 8 blocks, as shown
in Fig. 1(a). Each sub-MB 8 � 8 block can be further partitioned into
two 8 � 4, two 4 � 8, or four 4 � 4 blocks for prediction of its luma
component, as shown in Fig. 1(b). In HEVC, the concept of Coding
Tree Unit (CTU) is similar to the MB in H.264/AVC. However, the
largest CU (LCU) size of the CTU is up to 64 � 64. Four sub-CUs
of the same size would be split recursively, until to the minimum
CU size 8 � 8. Then different encoding parameters could be used
in each CU level. Fig. 1(c) shows an example of LCU partitions
and its corresponding quad-tree structure. As shown in Fig. 1(c),
the CU sizes of 64 � 64 to 8 � 8 are noted as Depth 0 to Depth 3,
and the number 1, 2, and 3 mean Depth 1, Depth 2 and Depth 3,
respectively. Basically, the concept of CU partition in HEVC is sim-
ilar to that of H.264/AVC, but it technically has more levels and lar-
ger blocks.

As H.264/AVC and HEVC are both block based hybrid video cod-
ing standards, they have the similar trend of using smaller size of
blocks in the texture/motion area, and using larger size blocks in
the smooth/static area. There would be high correlation between
H.264/AVC and HEVC block partitions. To verify the correlation,
statistical experiments are performed by a cascaded transcoder
made from the original H.264/AVC decoder and the original HEVC
encoder. The H.264/AVC bit streams are generated under QP 28
with structure IPPP, where the HEVC encoder is configured as
lowdelay P main (LP) setting under QP 28. Five sequences with
diverse properties and resolutions are adopted in this statistical
analyses, including BasketballPass (416 � 240), BQMall
(832 � 480), FourPeople (1280 � 720), BasketballDrive
(1920 � 1080), and Traffic (2560 � 1600).

One example of the optimal block partitions for BasketballPass
sequence from H.264/AVC and HEVC encoders are shown in Fig. 2.
In Fig. 2 (a), blocks of 16 � 16 (defined as larger block) are marked
as blue boundary, while smaller blocks are marked as red bound-
ary. In Fig. 2(b), the CUs with the size of 64 � 64 and 32 � 32
(defined as larger blocks) are marked as blue boundary, while
CUs with the sizes of 16 � 16 and 8 � 8 (defined as smaller blocks)
are marked as red boundary. Comparing Fig. 2(a) with Fig. 2(b), we
can find that when large size blocks are used by H.264/AVC, the
large size blocks will have high probability to be utilized at the
same area by HEVC, and vice versa. To analyze this correspondence
more accurately, the statistical correlation of the block similarity
between H.264/AVC and HEVC for five different sequences is

Table 1
Complexity analyses for each depth and theoretical time saving (inter frame).

Sequences QP Complexity of each depth Depth distributions (%) Time saving (%)

D0/D3 D1/D3 D2/D3 A0 A1 A2 A3 TS0 TS1 TS2

Basketballpass
(416 � 240)

24 30.3 12.2 3.9 18.7 40.5 35.1 5.6 29.2 62.9 75.4
28 31.4 12.3 3.9 21.2 40.4 34.4 4.1 30.8 64.0 75.7
32 30.7 11.8 3.7 24.4 41.2 31.7 2.6 33.0 65.6 76.2
36 30.1 12.0 3.6 27.8 42.7 27.9 1.6 35.2 67.6 76.7

BQMall
(832 � 480)

24 36.2 13.6 4.0 20.9 39.2 33.9 5.9 30.6 63.4 75.6
28 36.5 13.6 3.9 27.7 39.7 28.5 4.1 35.2 66.5 76.5
32 37.5 13.8 3.9 33.6 39.6 24.3 2.6 39.1 69.0 77.2
36 38.3 13.6 3.8 38.5 40.1 19.8 1.6 42.3 71.2 77.8

Johnny
(1280 � 720)

24 36.4 11.5 3.5 57.2 27.8 14.5 0.5 54.7 74.8 79.4
28 35.4 10.8 3.4 68.7 21.9 9.2 0.2 62.4 77.6 80.5
32 35.0 10.3 3.2 76.2 16.7 6.9 0.1 67.3 78.9 81.2
36 35.4 10.1 3.2 80.9 13.2 5.9 0.08 70.4 79.7 81.5

Kimono1
(1920 � 1080)

24 30.9 12.3 3.7 18.2 56.2 24.4 1.2 28.9 68.3 76.2
28 34.3 12.7 3.7 26.8 52.7 19.7 0.9 34.6 70.7 77.0
32 38.3 13.1 3.7 36.4 47.6 15.3 0.6 40.9 73.0 78.0
36 41.3 13.2 3.7 47.2 41.7 10.6 0.5 48.1 75.5 78.9

Average 34.9 12.3 3.7 39.0 37.6 21.4 2.0 42.67 70.54 77.74

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 827
shown in Fig. 3. We find that the average correlation between these
two standards ranges from 72% to 90% and reaches around 79% on
average. This statistical result demonstrates high correlation in
block partitions between these two video coding standards, which
we call ‘‘Block Partition Similarity” and it motivates our transcod-
ing optimization.

3. Analyses on complexity redundancies in HEVC transcoder

According to the three-level flexible quad-tree structure based
block partition in HEVC, three-level of classifiers are assigned for
the CU splitting prediction [23], as shown in Fig. 4. Symbols, such
as circle, rectangle and triangle, indicate different kinds of classi-
fiers and the arrows around the symbol indicate two choices or
class candidates. Three different classifiers are used to determine
splitting (+1) or not (�1) for CUs size from 64 � 64, 32 � 32,
16 � 16 to 8 � 8. There is one binary classifier in level one deter-
mining whether 64 � 64 or 32 � 32, four binary classifiers in level
two determining whether 32 � 32 or 16 � 16, and 16 binary clas-
sifiers in level three determining whether 16 � 16 or 8 � 8. Accord-
ing to this CU prediction structure, the potential complexity
reduction is statistically analyzed under the assumption that each
classifier has 100% CU prediction accuracy.
Fig. 4. CU splitting or non-s
We statistically analyze the time consumption for each CU
depth by transcoding each video stream four times with four dif-
ferent individual depths, so as to calculate upper bound of com-
plexity reduction. The transcoder is cascaded by the original
H.264/AVC decoder and original HEVC encoder. D0 to D3 indicate
the average time of encoding one unit for depth level 0–3, as
shown in the left three columns in Table 1. The time of encoding
four individual depths contains all the time consumption in the
coding process. By normalizing the complexity of each CU, we
get the average complexity from D0 to D3 as D0:D1:D2:
D3 = 34.9:12.3:3.7:1, which means the encoding complexity of
one CU with size from 64 � 64 to 8 � 8 is 34.9:12.3:3.7:1. In addi-
tion to the average CU coding complexity, the numbers of CUs in
the four depths is also analyzed. The percentages of the CU depth
from Depth 0 to Depth 3 are defined as A0, A1, A2, and A3. The mid-
dle four columns in Table 1 show the statistical results for A0 to A3.
In terms of the CU depth of the video frames, we observe that
about 39% and 37.6% image area select 64 � 64 and 32 � 32 CUs
respectively. On the other hand, only 2.0% image area select the
8 � 8 as their best CU size.

In Fig. 4, if only Classifier 0 is used in the CU depth prediction in
the transcoding, the time saving is defined as TS0; if Classifier 0 and
Classifier 1 are both used in the CU depth prediction, the time
plitting model in HEVC.

Fig. 5. Framework of the proposed H.264/AVC to HEVC transcoding.

828 L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837
saving is defined as TS1; if all three classifiers are activated, the
time saving is defined as TS2. Then, TS0, TS1 and TS2 can be calcu-
lated by

TS0 ¼1�A0D0þ4ð1�A0ÞD1þ16ð1�A0ÞD2þ64ð1�A0ÞD3

D0þ4D1þ16D2þ64D3
; ð1Þ

TS1 ¼1�A0D0þ4A1D1þ16ð1�A0�A1ÞD2þ64ð1�A0�A1ÞD3

D0þ4D1þ16D2þ64D3
; ð2Þ

TS2 ¼1�A0D0þ4A1D1þ16A2D2þ64A3D3

D0þ4D1þ16D2þ64D3
: ð3Þ

The right three columns in Table 1 illustrate the time saving for
different sequences. We can observe that TS0, TS1 and TS2 reach
42.67%, 70.54%, and 77.74% on average, respectively, which are
the upper bounds of the complexity reduction in CU depth predic-
tion. Also, they indicate that huge complexity reduction can be
achieved if the CU depth can be precisely predicted.
4. Proposed machine learning based fast H.264/AVC to HEVC
transcoding

4.1. Framework of the proposed transcoder

Fig. 5 shows the framework of the proposed H.264/AVC to HEVC
transcoding method, which has two stages, namely the training
and predicting stages. During training stage, H.264/AVC decoder
and HEVC encoder are connected as a cascaded transcoder, in
which CU splitting flags from the original HEVC encoder are col-
lected and regarded as the ground truth. At the same time, feature
vectors from the H.264/AVC bit-stream and HEVC coding process
are also extracted. Then, these extracted feature vectors and
labeled CU splitting flags (ground truth) are used as input to learn-
ing machine (train) to generate model parameters of the classifiers.
Then, the trained models are recorded and utilized to predict CU
splitting flags at the predicting stage. At the predicting stage, CU
splitting flags of encoding the current CU are predicted by the
machine learning algorithm (predict), then the predicted flags are
directly used in HEVC to set the CU partition and skip the
unnecessary checking operations, which lowers the complexity of
the HEVC encoder.

Switchers are required in this framework to switch between the
training and the predicting stages depending on the video content,
learning algorithm and parameters. The more frames are encoded
at the training stage, the better RD performance may be achieved,
since more samples could be used for training. However the coding
complexity will be increased as more frames are encoded with the
original HEVC encoder. There is a trade-off among the learning
robust, RD performance and the coding complexity. The optimiza-
tion will be discussed in detail in Section 4.4.

The proposed framework in Fig. 5 is inspired by the transcoding
architecture in [19]. Compared with [19], the major novelties and
differences of this work are listed as follows: (1) Since features is
of great importance to the prediction accuracy, optimal feature
combinations for the classifiers are selected based on the proposed
feature selection algorithm; (2) To have a good trade-off between
complexity reduction and RD performance, a probability threshold
and an adaptive threshold updating mechanism are proposed.

4.2. SVM based learning algorithm and the decision function

In this paper, the splitting and non-splitting prediction is a bin-
ary classification issue. Thus, SVM [24] is utilized due to its robust-
ness and good classification performance in solving numerous
realistic classification problems, especially the binary classification
issues. The main idea of SVM is to achieve an optimal classification
hyper-plane with the maximum margin between two classes. The
decision function [24] is:

f ðxÞ ¼ xT/ðxÞ þ b; ð4Þ

yðxÞ ¼ signðf ðxÞÞ ¼ þ1
�1

�
; ð5Þ

where x is a normal vector to a hyper-plane of classification, the
function /ðxÞ maps feature vector x into a higher dimensional
space, and b is the bias term. The feature vector x is one of key
components that affects the prediction accuracy. To improve the

Table 2
Feature candidates and their CC / CV values.

Note: Yellow shadow and ⁄ indicates the selected features.

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 829
prediction accuracy, in Section 4.3, we will analyze feature vectors
in detail and present a feature selection algorithm. The Radial Basis
Function (RBF) kernel is used with kernel parameter and regulariza-
tion parameters set as 0.5 and 1.

SVM outputs binary values (+1 or �1). However, in some real
applications, there usually exists an uncertain situation which is
of high false risk for either positive (+1) or negative (�1) predic-
tion. In HEVC CU depth prediction, the positive and negative sam-
ples are very close to each other at given features in some cases.
Either positive or negative prediction is probably false and causes
large RD degradations. Thus, to handle this problem, we map the
SVM binary outputs into probabilities with an additional sigmoid
function [25]. The probability can be defined as:

pðyðxÞ ¼ þ1jxÞ ¼ 1
1þ eAf ðxÞþB

; ð6Þ
pðyðxÞ ¼ �1jxÞ ¼ 1� pðyðxÞ ¼ þ1jxÞ; ð7Þ
where A and B are model parameters in the sigmoid function. By
using this probability, we mapped the SVM binary outputs into
three outputs, i.e. +1, �1 and 0 (uncertain). The decision function
is presented as

YðxÞ ¼
þ1 f ðxÞ > 0&pðyðxÞ ¼ þ1jxÞ P hu
0 else

�1 f ðxÞ < 0&pðyðxÞ ¼ �1jxÞ P hu

8><
>: ; ð8Þ

where hu is a threshold, and u 2 {Classifier 0, Classifier 1, Classifier
2}. As for the positive (+1) prediction, the current CU will be directly
split into four sub-CUs and skip checking the current CU depth. For
the negative prediction (�1), the current CU will only check the cur-
rent CU depth and will not be split. As for the uncertain prediction
(0), the original CU coding via RD comparison between the RD costs
of the current CU depth and sub-CU depth is used to maintain the
RD performance, which is the same as the original HEVC encoder.
It shall be noted that the threshold hu is a key parameter that not
only affects the prediction accuracy but also influences the coding
performance. It is analyzed in detail in Section 4.4.

4.3. Feature selection

Features are essential to the classification since good features
make classes more distinguishable and bad features may deterio-
rate the prediction accuracy. Inspired by recent state-of-the-art
works on fast video coding and transcoding [19–21], we summa-
rize them and come up with 24 feature candidates for the CU depth
prediction, as listed in the left columns in Table 2. These feature
candidates are basically extracted from three major sources,
including video content, H.264/AVC bit stream and context infor-
mation of the HEVC encoder.

(1) The video content features include variance of image lumi-
nance [19], number of edge pixels from edge detection,
and the gradient [21]. These features mainly represent the
texture information of the video content. Sum of Absolute
Difference (SAD) between the current and temporal co-
located blocks is a kind of joint information of motion and
texture for the video content.

(2) As for the features from H.264/AVC bit stream, we use the
common and prevailing features including the Coded Block
Pattern (CBP), MB modes [19], DCT coefficients [19] and
MVs [20].

(3) In addition, the context information of the HEVC encoder is
also exploited. The context features are mainly summarized
into two aspects, one is the spatial and temporal adjacent
encoded CUs including the above-left, above, above-right,
left and temporal co-located CUs corresponding to the cur-
rent CU. The other is previously checked or by-product out-
put information of the current CU. Features from adjacent

830 L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837
encoded CUs are CBF, average RD cost, optimal CU depth
[21], average distortion, number of bits, merge flags, skip
flags and context skip flags. Additionally, the by-product
output information of the current CU includes CBF, RD cost,
skip flag and merge flag after checking SKIP/Merge. Yet, the
rest of PU modes of the current CU are not checked.

Effective features are helpful to discriminate the classes and
improve the prediction accuracy. However, inappropriate features
may play a negative impact on the prediction accuracy and mean-
while cause additional complexity overhead. Using full set of fea-
tures may have a good prediction accuracy, but tends to increase
time consumption overhead of feature generation and classifier
training, as well as predicting complexities. We thus propose a fea-
ture selection algorithm to select representative features for the
SVM classifiers.

To analyze and select better features for the classifiers, three
sequences with different resolutions and motion properties, Bas-
ketballPass (416 � 240), BQMall (832 � 480) and FourPeople
(1280 � 720), were tested for the feature selection. Four quantiza-
tion parameters (QPs) with 24, 28, 32 and 36 were used to encode
these test sequences. Then, values of the 24 feature candidates and
the ground truth CU splitting flags were recorded from the inter
frame coding. The outputs of the SVM classifier with different com-
binations of feature candidates were verified by comparing with
the CU splitting flags (ground truth).

Pearson Correlation Coefficient (CC) and Cross Validation (CV)
accuracy [24] are employed to evaluate the effectiveness of these
feature candidates for the classification. CC is calculated between
the feature value and the labeled CU splitting flag (Ground truth).
Suppose p and q are the individual feature value and the corre-
sponding ground truth in a sample, the number of samples is N,
the value of CC can be calculated as

CC ¼

PN
i¼1 pi � 1

N

XN
j¼1

pj

 !
qi � 1

N

XN
j¼1

qj

 !
ffiPN

i¼1 pi � 1
N

PN
j¼1pj

� �2r
�

ffiPN
i¼1 qi � 1

N

PN
j¼1qj

� �2r : ð9Þ

The CV is a common operation in machine learning to measure
the stability of current trained classifier. In this paper, 10-fold CV is
used to validate the prediction accuracy. 9/10 of total samples are
used to train and 1/10 of total samples are used in the test. There
are ten iterations in total. At last the average prediction accuracy
is output.

The right six columns in Table 2 list the CC and CV for each indi-
vidual feature candidate, where the higher CC and CV values indi-
cate better performance of using corresponding features. We can
find that Feature 23 (Skip Flag) has the highest CC values for three
classifiers, which are 0.839, 0.698, and 0.542, respectively. The Skip
flag also has the highest CV accuracy for Classifier 0 and Classifier 1
among the candidate features, and the accuracies reach 92.4% and
85.4%, respectively. Whereas, for Classifier 2, Feature 18 (Merge
Flag) performs the best on CV accuracy. Consequently, features
with high CC and CV accuracy would be utilized to predict CU split-
ting flag in transcoding. Additionally, we observe that H.264/AVC
stream information and previous encoded information are more
important for classifiers in the proposed transcoding method, espe-
cially, Merge Flag and Skip Flag features from former checked
modes. Table 2 shows the CC and CV of using individual feature.
However, using one feature is optimal while it does not guarantee
to be the best when they are jointly used in the classification. Thus,
the performance of feature combinations is investigated. Suppose
the total number of candidate features is M, and the selected fea-
tures is K, feature combination means selecting K features out of
M candidate features.
To obtain the best feature combination, we thus propose a fea-
ture selection algorithm, which mainly consists of two steps: (1)
iteratively calculate the cost (i.e. CC or CV) of each feature combi-
nation, and (2) select the feature combination with the minimum
cost (i.e. maximum CC or CV) as the best. This feature selection pro-
cess is off-line and will not affect the complexity of the designed
transcoder. Details of the feature selection algorithm are shown
as follow, where feature[] denotes input feature candidates, M is
the total number of feature candidates in feature[], K is the number
of features that will be adopted in the transcoder, best_features[]
means the selected features.

Algorithm: Feature selection algorithm

Input: features[], M
Initialization: min_cost = MAX_VALUE
Output: best_features[], K
1: FOR 1 6 i 6M DO
2: Calculate the total number of combinations with given M

and i, n ¼ i!
i!�ðM�iÞ!

3: FOR 0 6 j < n DO
4: Get a combination of i features, and store it in

temp_feature[][]
5: Calculate the classification cost (temp_cost) of using the

temporal feature, temp_feature[][]
6: IF temp_cost <min_cost THEN
7: min_cost = temp_cost
8: best_features[] = temp_features[i][j]
9: K = j
10: END IF
10: END FOR
11: END FOR

According to the CV value and the feature selection algorithm, we
finally select out the 13 features for classification, which are marked
with yellow shadow and ⁄ in Table 2, since these 13 features provide
the maximum CV (92.5%, 89.0%, and 89.8% for Classifier 0, Classifier
1 and Classifier 2 respectively) in the SVM classification. The rest
features, such as texture, edge and gradient, which actually have lit-
tle contribution to CU splitting prediction accuracy, are ignored in
this paper.

4.4. Probability threshold determination

In Eq. (8), different probability thresholds hu influence the num-
ber of positive (+1) and negative (�1) predictions and have differ-
ent trade-offs between computational complexity and RD
performance. Larger threshold means better RD performance and
limited time saving, since more CUs will be selected using the
RDO process in Eq. (8). Smaller threshold leads to lower complex-
ity; however it may cause worse RD performance due to false pre-
diction. Thus, an appropriate threshold should be determined. In
this subsection, we propose an adaptive threshold scheme to
determine this probability threshold.

4.4.1. Initial threshold determination
To determine the optimal initial thresholds (denoted as h0, h1

and h2) for the three levels of the classifiers, statistical experiments
with different thresholds were performed over four test sequences,
including BasketballPass (416 � 240), BQMall (832 � 240),
FourPeople (1280 � 720) and PartySence (1920 � 1080). 25 frames
in each sequence were transcoded, where one intra frame was
encoded by the original HEVC and the next four inter frames were
used for training, the rest 20 frames were transcoded with opti-
mization. Three threshold sets (Gi, i = {0,1,2}) were used and they

(a) Relationship between time saving and thresholds (b) Relationship between BDPSNR and thresholds

Fig. 6. Time saving DT and BDPSNR for different thresholds.

issalC)b(0reifissalC)a(2reifissalC)c(1reif

Fig. 7. Decision cumulative probability histogram for different classifiers.

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 831
are defined as G0 = {h0,0.7,0.7}, G1 = {0.7,h1,0.7}, G2 = {0.7,0.7,h2}.
In each Gi, hi changed from 0.55 to 0.95 with the step of 0.05. Time
saving (DT) and Bjøntegaard Delta Peak-Signal-to-Noise Ratio
(BDPSNR) [26] calculated between the original cascade transcoder
and proposed transcoder were used to evaluate the transcoding
complexity and the compression efficiency respectively. Time sav-
ing DT is defined as:
DT ¼ 1
4

X4
i¼1

TcðQPiÞ � TwðQPiÞ
TcðQPiÞ

� 100%; ð10Þ
where TcðQPiÞ and TwðQPiÞ are the transcoding time of the original
cascaded transcoder [1] and scheme W with QPi, here W indicates
the proposed method.

Fig. 6 shows DT and BDPSNR for different threshold sets Gi. The
DT and BDPSNR are the average values collected from the four test
sequences. Fig. 6(a) shows the relationship between DT and
threshold, where the dots with different symbols are real collected
data and the curves are fitting results. When hi in each Gi is less
than 0.9, DT are all larger than 50%, which is a significant complex-
ity reduction. Fig. 6(b) shows the relationship between BDPSNR
and threshold. We can observe that the G2 curve is the steepest
and G0 is the flattest, which means that G2 is sensitive to the
changes of hi, and G0 is less sensitive. The BDPSNR degradation
reduces as hi increases. According to Fig. 6(a) and (b), the larger
hi in Gi leads to the better BDPSNR as well as smaller DT. To achieve
a better trade-off betweenDT and RD performance of the transcod-
ing, we select hi in Gi as the BDPSNR is larger than �0.10 dB and the
initial thresholds are set as 0.75, 0.80, and 0.85, respectively.

4.4.2. Adaptive threshold updating scheme
The initial threshold sets are obtained from the off-line statisti-

cal data. Though it can have a trade-off between the complexity
and RD performance in global aspect, it can hardly get the optimal
trade-off in every short time since video content and properties
vary along time. To solve this problem, an adaptive threshold
scheme is proposed. The transcoding optimization target is to max-
imize the computational complexity reduction while maintaining
the RD performance, thus, the objective can be modeled as

maxðDTÞ; s:t:fP 6 P0g; ð11Þ
where P is transcoding RD degradation, e.g. BDPSNR, and P0 is the
upper bound of allowable transcoding RD degradation. We find
DT is inverse proportional to the number of CUs with zero predic-
tion in Eq. (8). The BDPSNR value depends on the prediction accu-
racy of +1/�1 predictions. Thus, Eq. (10) can be rewritten as

max½1� f 1ðhÞ�; s:t:ff 2ðhÞ P t0g; ð12Þ
where f1(h) is the percentage of CUs with zero prediction for differ-
ent h in Eq. (8), f2(h) is prediction accuracy of +1/�1 predictions, and
t0 is a lower bound of the prediction accuracy. Lagrange multiplier is
introduced to solve Eq. (12) and the optimization target is rewritten
as

max JðhÞ; JðhÞ ¼ ½1� f 1ðhÞ� þ k� ½f 2ðhÞ � t0�; ð13Þ

Table 3
CU depth prediction accuracy fitting parameters.

Fitting parameters

Item Classifier 0 Classifier 1 Classifier 2

Fitting function f 2ðhÞ ¼ ahb þ c
Fitting Parameters a 0.1108 0.1938 0.1358

b 9.954 10.04 8.477
c 0.921 0.8628 0.8912

Fitting accuracy
SSE 0.00008 0.00027 0.00014
R2 0.9797 0.9782 0.9805
Adjusted R2 0.9729 0.9710 0.9740
RMSE 0.00375 0.00676 0.00485

832 L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837
where k is the Lagrange multiplier. It is easy to prove that Eq. (13) is
convex, thus, we can obtain the optimal h by taking derivative of Eq.
(13) and setting it to zero, which is

@J
@h

¼ �f 01ðhÞ þ kf 02ðhÞ � 0: ð14Þ

From Eq. (14), the Lagrange multiplier can be calculated as

k ¼ f 01ðhÞ
f 02ðhÞ

: ð15Þ

In order to get the optimal threshold h, the Lagrange multiplier
shall be determined firstly and now the problem becomes to calcu-
late the derivatives f 01ðhÞ and f 02ðhÞ.For the discrete data, the deriva-
tive f 01ðhÞ can be written as

f 01ðhÞ ¼
f 1ðhþ lÞ � f 1ðhÞ

l
; ð16Þ
(a) Classifier 0 (b) Clas

Fig. 8. CU depth prediction accu

Fig. 9. Adaptive threshold
where l is a small interval value for h. Actually, the Cumulative
Probability Function (CPF) f1(h) can be statistically collected in the
coding process, it satisfies f 1ðh1Þ P f 1ðh2Þ when h1 > h2, and
0 6 f 1ðhÞ 6 1. Therefore, f1(h + l) and f1(h) can be obtained from
given l and h. Fig. 7 shows an example of CPF f1(h) for three levels
of classifiers, which is collected from on-line coding. The horizontal
axis is h and the vertical axis is f1(h).

In addition to the percentage of f1(h) (zero-prediction), the pre-
diction accuracy of +1/�1 predictions, f2(h), is also analyzed. Four
test sequences were used in this experiment, including BQMall
(832 � 480), FourPeople (1280 � 720), BasketballDrive
(1920 � 1080) and Traffic (2560 � 1600). These H.264/AVC
streams were all transcoded to HEVC with QP value 28, and the
thresholds for three classifiers are the same and vary from 0.55
to 0.95. 41 frames were transcoded, in which one intra frame
was encoded by the original HEVC and four inter frames were used
for training, the rest frame were transcoded with low complexity
optimization. In the prediction, if the decision value is 0 in Eq.
(8), the full RDO process is activated, thus, this CU depth prediction
can be regarded as 100% accuracy.

Fig. 8 shows the CU depth prediction accuracy f2(h) for three
levels of classifiers, where the dots are real collected data and
curves are fitting results. We can observe that f2(h) of three levels
of classifiers increase as the thresholds increase. It indicates that
better RD performance could be achieved with larger thresholds
since the prediction accuracies are improved. Moreover, we also
notice that the prediction accuracy of Classifier 0 reaches higher
than 91% on average for different thresholds. The reason is the
selected features at classifier level 0 have better CC and higher
CV accuracy. In Fig. 8, the real collected data is fitted by power
function. We can find that the value of f2(h) is similar value among
different sequences. Table 3 shows the fitting parameters and fit-
ting accuracy from the average value, which is measured by SSE,
R2, adjusted R2 and RMSE. The R2 and adjusted R2 are higher than
sifier 1 (c) Classifier 2

racies with three classifiers.

updating mechanism.

Table 4
Complexity and RD performance of three decision levels in Proposed_Adapt.

Set Class Sequence L0 L0 + L1 L0 + L1 + L2

DT (%) BDBR (%) BDPSNR (dB) DT (%) BDBR (%) BDPSNR (dB) DT (%) BDBR (%) BDPSNR (dB)

Set1 Traffic 28.4 0.147 �0.008 48.7 0.992 �0.038 51.9 2.257 �0.082
B BasketballDrive 21.5 0.460 �0.020 44.5 1.772 �0.07 54.2 3.204 �0.125
C BQMall 16.7 0.243 �0.012 31.5 0.863 �0.040 43.7 1.976 �0.090

PartyScene 10.4 0.061 �0.008 25.6 0.209 �0.013 39.0 1.230 �0.055
D BasketballPass 12.3 �0.878 0.032 29.0 �0.440 0.012 40.9 2.189 �0.113
E FourPeople 49.3 0.226 �0.011 59.2 0.747 �0.035 65.4 1.638 �0.076
Average 23.1 0.043 �0.005 39.8 0.691 �0.031 49.2 2.082 �0.090

Set2 A PeopleOnStreet 13.4 0.155 �0.013 21.9 0.75 �0.043 27.2 2.753 �0.145
B BQTerrace 24.8 �0.393 �0.004 42.0 0.090 �0.012 46.4 1.158 �0.037

Cactus 25.0 �0.023 �0.002 41.8 0.967 �0.041 51.2 2.260 �0.091
Kimono1 15.2 0.401 �0.017 47.6 2.408 �0.106 55.5 2.732 �0.120
ParkScene 19.0 0.075 �0.007 39.5 0.805 �0.035 48.8 1.821 �0.073

C RaceHorsesC 11.0 0.053 �0.006 31.4 0.607 �0.028 45.0 1.569 �0.072
BasketballDrill 21.6 0.456 �0.022 39.8 1.167 �0.050 51.9 2.918 �0.121

D Blowing.Bubbles 7.0 �0.473 0.007 27.6 �0.152 �0.009 41.6 2.314 �0.105
BQSquare 5.4 0.195 �0.006 29.3 0.336 �0.010 35.0 0.754 �0.025
RaceHorses 0.8 �0.345 0.004 24.6 0.304 �0.023 37.4 1.722 �0.091

E Johnny 48.1 0.505 �0.019 59.3 0.433 �0.017 64.8 1.340 �0.049
KristenAndSara 40.1 �0.091 0.003 50.6 0.621 �0.027 61.7 1.245 �0.053
Video 1 45.1 0.053 �0.003 59.8 0.941 �0.038 65.7 1.745 �0.070
Video 3 48.8 0.941 �0.044 59.4 1.869 �0.084 65.6 2.621 �0.116
Video 4 40.0 0.428 �0.017 53.7 1.443 �0.056 61.3 2.270 �0.088

Average 24.4 0.129 �0.010 41.9 0.839 �0.039 50.6 1.948 �0.084

Average of all sequences 23.9 0.105 �0.008 41.3 0.796 �0.036 50.2 1.986 �0.085

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 833
0.97, and SSE and RMSE approach zero. Thus, we can conclude the
fitting accuracy is high enough and f2(h) can be approximated as a
power function of h, noted as

f 2ðhÞ ¼ ahb þ c; ð17Þ
where a, b and c are fitting parameters. According to Fig. 8, we also
find that the prediction accuracy of different sequences are similar,
therefore, we can use the average value to predict the prediction
accuracies for different sequences, instead of on-line prediction
for each sequence.

Substitute Eqs. (16) and (17) to Eq. (15), the Lagrange multiplier
can be presented as

k ¼ f 1ðhþ lÞ � f 1ðhÞ
ablhb�1 : ð18Þ

Applying Eq. (18) to Eq. (13), we can get the optimal h by

h� ¼ argmax ½1� f 1ðhÞ� þ
f 1ðhþ lÞ � f 1ðhÞ

ablhb�1 ½ahb þ c � t0�
()

: ð19Þ

Since f1(h) is collected from the transcoding process, the optimal
h is obtained in the on-line transcoding using Eq. (19). Fig. 9 shows
the mechanism of adaptive threshold updating and calculation.
There are four kinds of frames in video sequences. One is intra
frame (white rectangle). The second is a group of training frames
(yellow rectangles), which are encoded with the original HEVC.
From these frames, the ground truth data, such as CU depth, fea-
tures, are collected and the SVM classifiers are trained over these
ground truth data. The third is the inter frames optimized with ini-
tial thresholds, shown as the light blue rectangles. These frames
are optimized with CU depth prediction by using the initial thresh-
olds, and meanwhile, some statistical information, including f1(h),
etc. are collected for optimal h determination of the following
frames. Finally, as the fourth kind of frames, the optimization
frames (purple color) are encoded with fast coding optimization
and the optimal h is updated as well. The four kinds of frames
are encoded sequentially and will be repeated periodically.

The yellow frames are used for model training, they are un-
optimized frames. Thus, the complexity reduction will be reduced
as the percentage of yellow frames increase. Meanwhile, if the
number of these yellow training frames is too small, it will make
the training model unstable. In this paper, the number of yellow
frames is set as 4 in one cycle. The third kind of frames are opti-
mized frames and used to calculate f1(h). Meanwhile, f1(h) is fre-
quently updated during encoding the fourth kind of frames.
Therefore, we set the number of light blue frames as 4 as well.

Algorithm: Optimal threshold decision algorithm for h

Input: n, N, h0, x, a, b, c, t0
Initialization: m[] = 0
Output: h�

1: FOR 1 6 i 6 N DO
2: CALCULATE pðxiÞ by Eqs. (6) and (7)
3: FOR 1 6 k 6 n DO
4: IF pðxiÞ < 0:5þ 0:5

n � k THEN
5: m½k� 1� ¼ m½k� 1� þ 1

N

6: END IF
7: END FOR
8: END FOR
9: SOLVE

k� ¼ arg max
k

1�m½k� 1� þ 2n� m½k��m½k�1�
ab� 1

2þ 1
2n�ðk�1Þð Þb�1

�

� a 1
2 þ 1

2n � ðk� 1Þ� �b þ c � t0
� �

Þ
10: CALCULATE h ¼ 0:5þ 0:5

n � ðk� � 1Þ
11: CALCULATE the final threshold h� ¼ h�xþ h0 � ð1�xÞ

Table 5
Complexity and RD performance comparison between the proposed algorithm and benchmarks (LP).

Set Class Sequence ICIP2012 [12] CSVT2014 [20] JM Decoder + TMM2013
[30]

Proposed_Adpt

DT (%) BD
BR
(%)

BD
PSNR (dB)

DT (%) BD
BR
(%)

BD
PSNR
(dB)

DT (%) BD
BR
(%)

BD
PSNR
(dB)

DT (%) BD
BR
(%)

BD
PSNR
(dB)

Set1 A Traffic 40.4 2.595 �0.094 43.0 2.021 �0.073 33.7 1.635 �0.059 51.9 2.257 �0.082
B BasketballDrive 41.2 8.104 �0.315 41.5 1.823 �0.071 20.8 1.906 �0.075 54.2 3.204 �0.125
C BQMall 40.1 3.616 �0.170 46.5 3.143 �0.149 27.1 4.909 �0.234 43.7 1.976 �0.090

PartyScene 38.1 1.833 �0.078 39.4 1.832 �0.079 26.3 1.164 �0.048 39.0 1.230 �0.055
D BasketballPass 35.1 1.968 �0.099 47.9 3.199 �0.161 26.6 4.091 �0.202 40.9 2.189 �0.113
E FourPeople 39.4 3.004 �0.139 54.7 2.262 �0.105 52.1 4.391 �0.204 65.4 1.638 �0.076
Average 39.1 3.520 �0.149 45.5 2.380 �0.106 31.1 3.016 �0.137 49.2 2.082 �0.090

Set2 A PeopleOnStreet⁄ 43.2 3.563 �0.186 47.7 2.258 �0.119 20.8 2.176 �0.113 27.2 2.753 �0.145
B BQTerrace 39.2 1.634 �0.048 43.1 1.759 �0.048 33.3 1.440 �0.040 46.4 1.158 �0.037

Cactus 40.2 3.530 �0.142 42.7 1.643 �0.066 33.6 3.078 �0.125 51.2 2.260 �0.091
Kimono1 40.5 4.852 �0.211 44.9 1.308 �0.057 15.2 0.552 �0.024 55.5 2.732 �0.120
ParkScene 39.9 2.091 �0.083 44.8 1.368 �0.054 30.2 1.304 �0.051 48.8 1.821 �0.073

C RaceHorsesC 40.9 3.301 �0.150 44.8 2.498 �0.115 20.3 2.646 �0.118 45.0 1.569 �0.072
BasketballDrill 41.8 4.115 �0.170 43.9 1.977 �0.081 26.3 3.116 �0.128 51.9 2.918 �0.121

D Blowing.Bubbles⁄ 37.3 2.313 �0.098 42.3 1.825 �0.076 20.4 1.242 �0.053 41.6 2.314 �0.105
BQSquare 40.7 1.335 �0.049 42.9 3.100 �0.113 33.2 3.461 �0.126 35.0 0.754 �0.025
RaceHorses 38.7 2.787 �0.139 43.4 2.894 �0.145 20.1 1.518 �0.079 37.4 1.722 �0.091

E Johnny 39.1 3.080 �0.112 48.4 2.451 �0.089 51.9 3.303 �0.120 64.8 1.340 �0.049
KristenAndSara 38.6 2.892 �0.122 53.2 2.593 �0.109 47.6 4.847 �0.205 61.7 1.245 �0.053
Vidyo 1 38.2 2.287 �0.091 53.4 1.707 �0.068 51.2 3.177 �0.128 65.7 1.745 �0.070
Vidyo 3 39.9 3.939 �0.174 54.4 4.013 �0.176 50.4 3.140 �0.141 65.6 2.621 �0.116
Vidyo 4 40.4 3.481 �0.137 50.3 1.764 �0.070 45.4 4.361 �0.173 61.3 2.270 �0.088

Average 39.9 3.013 �0.127 46.7 2.211 �0.092 33.3 2.624 �0.108 50.6 1.948 �0.084

Average of all sequences 39.7 3.158 �0.134 46.3 2.259 �0.096 32.7 2.736 �0.116 50.2 1.986 �0.085

selbbuBgniwolB)b(ssaPllabteksaB)a(

erauqSQB)d(sesroHecaR)c(

Fig. 10. CU partition prediction by the proposed algorithm.

834 L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837
The optimal threshold decision algorithm for h is presented as
above. The input n is the number of patches of the cumulative
probability histogram, which represents the fidelity of h. N is
the total number of CU of the light blue frames (the third type).
m[] is the value of f1(h), h0 is the used h of previous frames.
x 2 [0,1] is a weighting factor for the updating. Smaller x leads
to stable h while larger x may make h sensitive to the video
content. In this paper, x is set as 0.85. The proposed scheme
using the adaptive threshold is denoted as Proposed_Adapt for
short.

Table 6
Complexity and RD performance comparison between the proposed algorithm and benchmarks (RA).

Set Class Sequence ICIP2012 [12] CSVT2014 [20] JM Decoder + TMM2013
[30]

Proposed_Adpt

DT (%) BD
BR
(%)

BD
PSNR (dB)

DT (%) BD
BR
(%)

BD
PSNR
(dB)

DT (%) BD
BR
(%)

BD
PSNR
(dB)

DT (%) BD
BR
(%)

BD
PSNR
(dB)

Set1 A Traffic 43.2 1.920 �0.071 32.5 1.733 �0.069 43.1 1.266 �0.044 51.8 2.510 �0.110
B BasketballDrive 43.3 7.657 �0.246 37.6 3.703 �0.131 34.3 4.607 �0.170 42.0 4.336 �0.148
C BQMall 42.9 3.539 �0.149 38.7 2.945 �0.144 36.9 4.184 �0.207 43.4 2.241 �0.105

PartyScene 41.9 1.520 �0.059 43.2 1.897 �0.078 37.4 1.514 �0.068 39.8 2.509 �0.078
D BasketballPass 36.9 2.432 �0.104 43.6 4.173 �0.200 35.5 3.985 �0.183 41.6 2.338 �0.094
E FourPeople 42.4 1.387 �0.074 53.3 2.048 �0.088 58.8 1.904 �0.102 62.1 0.982 �0.063
Average 41.8 3.076 �0.117 41.5 2.750 �0.118 41.0 2.910 �0.129 46.8 2.486 �0.100

Set2 A PeopleOnStreet 45.7 3.876 �0.167 50.7 3.650 �0.164 29.9 2.169 �0.113 29.1 2.443 �0.140
B BQTerrace 42.8 1.184 �0.034 42.0 2.334 �0.075 43.5 1.279 �0.034 56.0 1.746 �0.052

Cactus 44.0 3.429 �0.125 38.9 2.041 �0.077 45.9 3.417 �0.144 48.8 2.572 �0.115
Kimono1 43.5 4.003 �0.156 40.0 3.276 �0.132 29.7 0.881 �0.034 58.0 2.776 �0.116
ParkScene 42.1 1.835 �0.066 40.0 3.152 �0.126 40.5 1.310 �0.048 50.8 2.219 �0.085

C RaceHorsesC 44.0 3.832 �0.139 43.4 3.660 �0.164 29.9 3.214 �0.141 37.9 2.302 �0.079
BasketballDrill 45.0 3.707 �0.136 39.0 3.787 �0.165 34.9 3.254 �0.137 47.0 2.791 �0.114

D Blowing.Bubbles 39.4 2.216 �0.086 36.1 2.095 �0.105 32.3 1.261 �0.048 42.6 3.098 �0.114
BQSquare 41.9 0.795 �0.026 42.2 2.974 �0.118 43.0 2.499 �0.077 40.5 2.141 �0.075
RaceHorses 40.8 3.727 �0.151 39.3 3.791 �0.165 31.5 1.997 �0.090 38.1 2.562 �0.100

E Johnny 42.2 1.538 �0.065 40.8 1.873 �0.077 58.3 1.481 �0.059 60.2 2.427 �0.078
KristenAndSara 41.7 1.520 �0.076 50.6 2.368 �0.090 56.0 2.299 �0.110 61.6 1.598 �0.072
Vidyo 1 41.6 1.582 �0.064 56.2 3.181 �0.130 56.6 1.631 �0.086 62.6 1.649 �0.068
Vidyo 3 43.0 2.513 �0.112 44.7 2.843 �0.120 55.6 1.873 �0.098 61.1 1.716 �0.079
Vidyo 4 43.4 4.984 �0.139 48.8 4.169 �0.103 52.0 3.242 �0.136 57.6 3.489 �0.127

Average 42.7 2.716 �0.103 43.5 3.013 �0.121 42.6 2.120 �0.090 50.1 2.369 �0.094

Average of all sequences 42.5 2.819 �0.107 42.9 2.938 �0.120 42.2 2.346 �0.101 49.2 2.402 �0.096

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 835
4.5. Overall algorithm of the proposed transcoder

The overall algorithm of the proposed transcoding process has
two sub-steps, on-line model training and predicting. After model
training, the switcher in Fig. 5 is turned to the predicting stage to
encode rest frames. The switcher can be turned to model training
for model updating if necessary. Detailed steps of the model train-
ing and predicting are shown as follows.

Model Training:
Step (1): Encode yellow frames and collect ground truth CU

depth data;
Step (2): Train SVM model over the ground truth CU depth

and feature.
Predicting:
Step (1): Extract feature vectors of the current CU;
Step (2): Predict CU split flag with trained SVM mode

parameters;
Step (3): Calculate decision probability according to decision

value by Eqs. (6) and (7);
Step (4): If decision probability is smaller than threshold,

encode the current CU and split the current CU into four
sub-CUs, go to Step 7;

Step (5): If decision value is larger than 0, split the current CU
into four sub-CUs, go to Step 7;

Step (6): Encode the current CU, go to Step 8;
Step (7): Go to Step 1for four sub-CUs;
Step (8): Go to Step 1 for next CU.
5. Experimental results and analyses

To testify the effectiveness of the proposed fast transcoding
method, we implemented it on the platform an original cascaded
transcoder consists of the JM 18.4 [27] and HM 14.0 [28]. 21
different test sequences with various resolutions and properties,
from Class A to Class E [29], were utilized. And these test sequences
are divided into two sets, Set 1 is the group of sequences which
have been utilized in feature selection and model training, and
Set 2 is the rest of test sequences. Firstly, they were encoded with
H.264/AVC when QP was set as 28 to generate bit streams, i.e., one
bit stream for each sequence. Coding structure is IPPP. Then, the
H.264/AVC bit streams were put into the fast H.264/AVC to HEVC
transcoder, which transcoded the bit stream with four different
QPs of 22, 27, 32 and 37 under HEVC common test conditions
[29]. The HEVC transcoder was set as LP and random access (RA)
configurations, respectively. Fast encoder decision and fast deci-
sion for Merge RD cost were enabled for HM 14.0. All the video
transcoding experiments were performed on the computer with
CPU AMD Athlon IIX2 B24, 2.99 GHz, 2 GB memory, Window XP
operating system. BDPSNR and Bjønteggard Delta Bit Rate (BDBR)
[26] were used to evaluate the RD performance of different
schemes compared with the original cascaded transcoder. Addi-
tionally, processing time of transcoding was recorded, which
includes time of decoding, model training, encoding and threshold
updating. DT in Eq. (10) was also calculated to measure the com-
plexity reduction where W 2 {ICIP2012 [12], CSVT2014 [20],
TMM2013 [30], Proposed_Adapt}. In the optimal threshold deci-
sion algorithm, n was set as 10.
5.1. Transcoding performance for three levels of CU depth prediction

There are three levels of CU decision from CU depth 0–3, which
are D0/D1, D1/D2 and D2/D3. Thus, the coding performances of
three-level of CU depth prediction are analyzed individually. Here,
we denote the three levels of CU depth prediction by using classi-
fier 0–2 as L0 to L2 respectively.

Table 4 presents the RD performance of three decision levels. It
shows that 23.9% transcoding time is saved on average for L0, in
which only CU depth D0/D1 are predicted by the Classifier 0. Mean-
while, the average BDPSNR and BDBR values are �0.008 dB and

Table 7
Time consuming analysis for each part and complexity overheads in the proposed transcoder.

Sequence QP Time consuming (s) Complexity of the overall transcoder (%)

TDEC TMT TENC TTOT TDEC/TTOT TMT/TTOT TENC/TTOT

BasketBallPass
(416 � 240)

24 0.61 0.43 280.68 281.72 0.22 0.15 99.63
28 0.45 0.35 231.77 232.56 0.19 0.15 99.66
32 0.45 0.24 195.28 195.97 0.24 0.12 99.64
36 0.45 0.29 164.72 165.45 0.26 0.17 99.57

BQMall
(832 � 480)

24 3.51 1.72 1152.36 1157.59 0.30 0.14 99.56
28 2.07 1.29 971.68 975.03 0.21 0.13 99.66
32 2.02 1.20 855.56 858.78 0.23 0.14 99.63
36 1.93 1.17 719.63 722.73 0.26 0.16 99.58

FourPeople
(1280 � 720)

24 4.12 4.47 876.05 884.64 0.46 0.50 99.04
28 2.96 3.50 811.75 818.20 0.36 0.42 99.22
32 2.89 3.31 735.95 742.16 0.38 0.44 99.18
36 2.82 3.11 618.21 624.14 0.45 0.49 99.06

BasketBallDirve
(1920 � 1080)

24 16.24 21.31 5769.87 5807.41 0.27 0.36 99.37
28 11.44 12.70 4512.14 4536.28 0.25 0.27 99.48
32 10.54 11.15 3501.86 3523.55 0.29 0.31 99.40
36 10.49 10.00 2892.06 2912.55 0.36 0.34 99.30

Traffic
(2560 � 1600)

24 23.20 111.14 9034.18 9168.52 0.24 1.21 98.55
28 23.30 52.09 6317.31 6392.70 0.36 0.81 98.83
32 23.40 28.35 4728.50 4780.25 0.48 0.59 98.93
36 23.20 20.73 3776.74 3820.67 0.60 0.54 98.86

Average 0.32 0.37 99.31

836 L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837
0.105%, respectively. The RD degradation is very small and negligi-
ble since the CU depth prediction accuracy is higher than 91%
according to Fig. 8(a). For L0 + L1 where two levels of classifiers
are applied, 41.3% transcoding time is saved, meanwhile, average
BDPSNR and BDBR values are �0.036 dB and 0.796%, respectively.
As one more level is optimized, more complexity reduction could
be achieved at the cost of a little RD degradation. For L0 + L1 + L2
in which all three levels are optimized, the complexity reduction
is 50.2% on average. The BDPSNR and BDBR values are �0.085 dB
and 1.986%, respectively. The three levels of CU depth prediction,
L0 + L1 + L2 has the lowest complexity and relative larger RD degra-
dation. L0 has negligible RD degradation and the complexity reduc-
tion is relatively small. L0 to L2 can be used individually or jointly,
which can be flexibly activated according to user preference or sys-
tem requirements. The complexity reductions in different settings
are 23.9%, 41.3% and 50.2%, which are approaching the maximum
potential complexities, 42.67%, 70.54% and 77.74%, as shown in
Table 1. However, there is still a gap since the decoder and the
encoder of encoding the training frames are not optimized; mean-
while, feature extraction, and on-line model training will bring a
few additional complexity overheads. Fig. 10 shows the CU size
prediction with the L0 + L1 + L2 optimization, where the grid is
the predicted CU size. The blue rectangles are correctly predicted
CU and the red rectangles are falsely predicted CU. We can observe
that the size of most CU can be correctly predicted by the proposed
H.264/AVC to HEVC transcoder.

5.2. Transcoding performance comparison with the state-of-the-art
benchmarks

Tables 5 and 6 show the complexity and RD performance com-
parisons with three state-of-the-art transcoding schemes, includ-
ing ICIP2012 [12], CSVT2014 [20] and a fast CU depth decision
algorithm in HEVC cascaded with JM decoder, denoted as ‘‘JM
Decoder + TMM2013 [30]”. Compared with the original cascaded
transcoder that consists of the original H.264/AVC decoder and
the original HEVC encoder, ICIP2012 under LP configuration can
reduce complexity from 35.1% to 43.2%, 39.7% on average. Mean-
while, BDPSNR is from �0.049 dB to �0.315 dB, �0.134 dB on aver-
age. And the BDBR increases from 1.335% to 8.104%, 3.158% on
average. For RA configuration, ICIP2012 can reduce complexity
42.5% on average with BDPSNR degradation as �0.107 dB. Though
significant complexity reduction is achieved, the RD degradation is
large. The CSVT2014 under LP configuration reduces the complex-
ity from 39.4% to 54.7%, 46.3% on average. The BDPSNR degradation
is from �0.054 dB to �0.176 dB, �0.096 dB on average. The BDBR
increases from 1.308% to 4.013%, 2.259% on average. For RA config-
uration, CSVT2014 reduces complexity 42.9% on average while
BDBR increase 2.938%. It achieves more complexity reduction
and has better RD performance when compared with ICIP2012.
As for the ‘‘JM Decoder + TMM2013” under LP configuration, it
reduces complexity from 15.2% to 52.1%, which is 32.7% on aver-
age. Meanwhile, the BDBR and BDPSNR are 2.736% and
�0.116 dB on average, respectively. For RA configuration, ‘‘JM
Decoder + TMM2013” can reduce complexity 42.2% on average,
which is more than that of the LP configuration.

As illustrated in Tables 5 and 6, the Proposed_Adapt reduces
complexity 50.2% and 49.2% on average, meanwhile the average
BDPSNR are �0.085 dB and �0.096 dB under LP and RA configura-
tions, respectively. The proposed scheme achieves more complex-
ity reduction and less RD degradation when compared with the
benchmarks, which has proved the effectiveness of the proposed
scheme. For some special cases, such as ‘‘PeopleOnStreet” and
‘‘BlowingBubbles”, the proposed method is not superior when
compared with CSVT2014 because of the initial probability thresh-
old and the constant weighting factor x. However, the proposed
algorithm is the best in terms of complexity reduction and RD per-
formance for most of sequences.

Besides the RD performance and the overall complexity, we also
analyze the coding complexity of each part of the Proposed_Adapt
algorithm, as shown in Table 7. The Proposed_Adapt consists of
three parts, including H.264/AVC decoder (DEC), SVM model train-
ing plus threshold calculation (MT), and the HEVC encoder (ENC).
The processing time of each part is denoted as TDEC, TMT, and TENC,
Let TTOT be the overall processing time of the transcoder. In the
transcoder, we can observe that the TDEC/TTOT and TMT/TTOT are only
0.32% and 0.37% on average, and TENC/TTOT is major part of the com-
plexity, which has 99.31%. Therefore, the overhead complexity of
the model training plus threshold calculation is little and negligible
compared to the HEVC encoder. Because the training data (features

L. Zhu et al. / J. Vis. Commun. Image R. 38 (2016) 824–837 837
and ground truths) are extracted from the first four frames of each
sequence, the sequences with large resolution would have more
training data than the sequences with small resolution. More train-
ing data means higher on-line training complexity. Therefore, the
time consuming of TMT is a little more for the sequences with large
resolution. But the value of TMT/TTOT is very small for all the
sequences. The proposed transcoder focuses on the complexity
reduction of TENC, which can reach about 50%. Although it is not
real time, the complexity reduction is beneficial to real time appli-
cations of the H.264/AVC to HEVC transcoding. Details of the
source code, trained model and testing results can be referred in
the website.1

6. Conclusions

In this paper, we exploit the block partition similarity between
coding standards and present a fast H.264/AVC to HEVC transcod-
ing method based on SVM, so as to reduce transcoding complexity.
In the proposed method, reprehensive SVM features are selected
by the proposed feature selection algorithm, and the prediction
accuracy of the CU depth prediction is improved by the proposed
adaptive parameter determination algorithm. Extensive experi-
ments reveal that the proposed fast transcoding method can
reduce 50.2% and 49.2% complexity on average under LP and RA
configurations, respectively, while the rate-distortion degradation
is negligible. The proposed scheme, which is more efficient and
outperforms the state-of-the-art benchmarks, will be useful for
high-quality transcoding applications and services.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China under Grants 61471348, U1301257 and
61272289, in part by Shenzhen Overseas High-Caliber Personnel
Innovation and Entrepreneurship Project under Grant
KQCX20140520154115027, and in part by Guangdong Special
Support Program for Youth Science and Technology Innovation
Talents under Grant 2014TQ01X345, in part by the National
High-tech R&D Program of China under Grant 2015AA015901,
and by Zhejiang Provincial Natural Science Foundation of China
under Grant LY15F010005.

References

[1] I. Ahmad, X. Wei, Y. Sun, Y. Zhang, Video transcoding: an overview of various
technique and research issues, IEEE Trans. Multimedia 7 (5) (2005) 793–804.

[2] J.D. Cock, S. Notebaert, P. Lambert, R.V. Walle, Motion-refined rewriting of
H.264/AVC-coded video to SVC streams, J. Vis. Commun. Image R 22 (2011)
391–400.

[3] H. Kalva, The H.264 video coding standard, IEEE Multimedia 13 (4) (2006) 86–
90.

[4] G. Sullivan, J. Ohm, W. Han, T. Wiegand, Overview of the High Efficiency Video
Coding (HEVC) standard, IEEE Trans. Circ. Syst. Video Technol. 22 (12) (2012)
1649–1668.

[5] F. Zhang, E. Steinbach, P. Zhang, MDVQM: a novel multidimensional no-
reference video quality metric for video transcoding, J. Vis. Commun. Image R
25 (2014) 542–554.
1 http://codec.siat.ac.cn/downloadcenter/machine-learning-based-fast-transcod-
ing.rar.
[6] Y. Liu, S. Ci, H. Tang, Y. Ye, J. Liu, QoE-oriented 3D video transcoding for mobile
streaming, ACM Trans. Multimedia Comput. Commun. Appl. 8 (3s) (2012).
Article 42:1-20.

[7] X. Liu, K.Y. Yoo, Fast interframe mode decision algorithm based on mode
mapping and MB activity for MPEG-2 to H.264/AVC transcoding, J. Vis.
Commun. Image R 21 (2010) 155–166.

[8] H. Shu, L.P. Chau, Intra/inter macroblock mode decision for error-resilient
transcoding, IEEE Trans. Multimedia 10 (1) (2008) 97–104.

[9] S. Kim, J. Han, J. Kim, Efficient motion estimation algorithm for MEPG-2 to
H.264 transcoder, in: Proc. IEEE Int’l Conf. Image Process., Genoa, Italy, 2005.
pp. III-656-9.

[10] K. Fung, W. Siu, Low complexity H.263 to H.264 video transcoding using
motion vector decomposition, Proc. IEEE Int’l Symp. Circuits Syst., vol. 2, 2005,
pp. 908–911.

[11] B. Petljanski, H. Kalva, DCT domain intra MB mode decision for MPEG-2 to
H.264 transcoding, in: Proc. IEEE Int’l Conf. Consumer Electron., Las Vegas, NV,
USA, 2006, pp. 419–420.

[12] E. Peixoto, E. Izquierdo, A complexity-scalable transcoder from H.264/AVC to
the new HEVC codec, in: Proc. IEEE Int. Conf. Image Process., Orlando, FL, USA,
2012, pp. 737–740.

[13] D. Zhang, B. Li, J. Xu, H. Li, Fast transcoding from H.264/AVC to high efficiency
video coding, in: Proc. IEEE Int’l Conf. Multimedia Expo., Melbourne, VIC, 2012,
pp. 651–656.

[14] T. Shen, Y. Lu, Z. Wen, L. Zou, Y. Chen, J. Wen, Ultra-fast H.264/AVC to HEVC
transcoder, in: Data Compress. Conf., Snowbird, UT, March 20–22, 2013, pp.
241–250.

[15] W. Jiang, Y.W. Chen, Low-complexity transcoding from H.264 to HEVC based
on motion vector clustering, Electron. Lett. 49 (19) (2013) 1224–1226.

[16] Y. Chen, Z. Wen, J. Wen, M. Tang, P. Tao, Efficient software H.264/AVC to HEVC
transcoding on distributed multi-core processors, IEEE Trans. Circ. Syst. Video
Technol. 25 (8) (2015) 1423–1434.

[17] G. Fernandez-Escribano, H. Kalva, J.L. Martinez, P. Cuenca, L. Orozco-Barbosa,
A. Garrido, An MPEG-2 to H.264 video transcoder in the baseline profile, IEEE
Trans. Circ. Syst. Video Technol. 20 (5) (2010) 763–768.

[18] C. Chiang, W. Pan, S. Zhuang, S. Lai, Fast H.264 encoding based on statistical
learning, IEEE Trans. Circ. Syst. Video Technol. 21 (9) (2011) 1304–1315.

[19] T. Shanableh, E. Peixoto, E. Izquierdo, MPEG-2 to HEVC video transcoding with
content-based modeling, IEEE Trans. Circ. Syst. Video Technol. 23 (7) (2013)
1191–1196.

[20] E. Peixoto, T. Shanableh, E. Izquierdo, H.264/AVC to HEVC video transcoder
based on dynamic thresholding and content modeling, IEEE Trans. Circ. Syst.
Video Technol. 24 (1) (2014) 99–112.

[21] X. Shen, L. Yu, CU splitting early termination based on weighted SVM, EURASIP
J. Image Video Process. 4 (2013) 1–11.

[22] J. Xiong, H. Li, F. Meng, S. Zhu, Q. Wu, B. Zeng, MRF-based fast HEVC inter CU
decision with the variance of absolute differences, IEEE Trans. Multimedia 16
(8) (2014) 2141–2153.

[23] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, L. Xu, Machine learning based
coding unit depth decisions for flexible complexity allocation in high efficiency
video coding, IEEE Trans. Image Process. 24 (7) (2015) 2225–2238.

[24] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machine, ACM Trans.
Intell. Syst. Technol. 2 (3) (2011) 1–27.

[25] V. Franc, A. Zien, B. Scholkopf, Support vector machines as probabilistic
models, in: Proc. IEEE Int’l. Conf. Machine Learning, Bellevue, WA, USA, 2011.

[26] G. Bjøntegaard, Calculation of Average PSNR Differences between RD-Curves,
ITU-T Video Coding Experts Group (VCEG), doc. M33, Austin, TX, 2001.

[27] ITU-T, Joint Model (JM), H.264/AVC Reference Software, JM 18.6. <http://
iphome.hhi.de/suehring/tml/download/>.

[28] K. McCann, B. Bross, W.-J. Han, I.K. Kim, K. Sugimoto, G.J. Sullivan, High
Efficiency Video Coding (HEVC) Test Model 14 (HM 14) Encoder Description,
JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Tech. Rep. Doc.
JCTVC-P1002, San Jose, CA, January 9–17, 2014. <http://hevc.hhi.fraunhofer.
de/svn/svn_HEVCSoftware/tags/HM-14.0/>.

[29] F. Bossen, Common Test Conditions and Software Reference Configurations,
JCTVC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Tech. Rep. Doc.
JCTVC-J1100, Stockholm, SE, July 11–20, 2012.

[30] L. Shen, Z. Liu, X. Zhang, W. Zhao, Z. Zhang, An effective CU size decision
method for HEVC encoders, IEEE Trans. Multimedia 15 (2) (2013) 465–470.

http://refhub.elsevier.com/S1047-3203(16)30054-2/h0005
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0005
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0010
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0010
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0010
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0015
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0015
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0020
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0020
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0020
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0025
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0025
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0025
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0030
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0030
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0030
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0035
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0035
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0035
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0040
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0040
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0045
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0045
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0045
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0045
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0050
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0050
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0050
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0050
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0055
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0055
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0055
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0055
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0060
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0060
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0060
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0060
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0065
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0065
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0065
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0065
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0075
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0075
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0080
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0080
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0080
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0085
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0085
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0085
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0090
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0090
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0095
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0095
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0095
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0100
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0100
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0100
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0105
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0105
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0110
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0110
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0110
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0115
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0115
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0115
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0120
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0120
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0125
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0125
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0125
http://iphome.hhi.de/suehring/tml/download/
http://iphome.hhi.de/suehring/tml/download/
http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-14.0/
http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-14.0/
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0150
http://refhub.elsevier.com/S1047-3203(16)30054-2/h0150
http://codec.siat.ac.cn/downloadcenter/machine-learning-based-fast-transcoding.rar
http://codec.siat.ac.cn/downloadcenter/machine-learning-based-fast-transcoding.rar

	Machine learning based fast H.264/AVC to HEVC transcoding exploiting block partition similarity
	1 Introduction
	2 Problems and motivations
	3 Analyses on complexity redundancies in HEVC transcoder
	4 Proposed machine learning based fast H.264/AVC to HEVC transcoding
	4.1 Framework of the proposed transcoder
	4.2 SVM based learning algorithm and the decision function
	4.3 Feature selection
	4.4 Probability threshold determination
	4.4.1 Initial threshold determination
	4.4.2 Adaptive threshold updating scheme

	4.5 Overall algorithm of the proposed transcoder

	5 Experimental results and analyses
	5.1 Transcoding performance for three levels of CU depth prediction
	5.2 Transcoding performance comparison with the state-of-the-art benchmarks

	6 Conclusions
	Acknowledgements
	References

